Antioxidants inhibit indoleamine 2,3-dioxygenase in IFN-gamma-activated human macrophages: posttranslational regulation by pyrrolidine dithiocarbamate.
نویسندگان
چکیده
Induction of the heme-containing indoleamine 2,3-dioxygenase (IDO) by IFN-gamma is implicated in anti-microbial and pro-inflammatory activities of human macrophages. Antioxidants can modulate the expression of immune and inflammatory genes, and pyrrolidine dithiocarbamate (PDTC) is a frequently used antioxidant to inhibit the transcription factor NF-kappaB. Here we show that IFN-gamma treatment of human monocyte-derived macrophages (hMDMs) increased the proportion of oxidized glutathione. PDTC attenuated this increase and inhibited IDO activity, although it increased IDO protein expression and did not affect IDO mRNA expression and enzyme activity directly. Other antioxidants, 2-ME, ebselen, and t-butyl hydroquinone, inhibited IDO protein expression. Similar to PDTC, the heme biosynthesis inhibitor succinylacetone (SA) and the iron-chelator pyridoxal isonicotinoyl hydrazone inhibited cellular IDO activity without affecting protein expression, whereas addition of hemin or the heme precursor delta-aminolevulinic acid increased IDO activity. Also, incubation of IFN-gamma-activated hMDM with delta-[(14)C]-aminolevulinic acid resulted in the incorporation of label into immunoprecipitated IDO, a process inhibited by PDTC and SA. Furthermore, supplementation of lysates from PDTC- or SA-treated hMDM with hemin fully restored IDO activity to control levels, and hemin also reversed the inhibitory action of SA but not PDTC in intact cells. Together these results establish a requirement for de novo heme synthesis for IDO activity in IFN-gamma-activated hMDM. They show that, similar to other pro-inflammatory proteins, the activity of IDO is modulated by antioxidants though in the case of PDTC this takes place posttranslationally, in part by limiting the availability of heme for the formation of holo-IDO.
منابع مشابه
Indoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy
Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...
متن کاملInterleukin-1 inhibits gamma interferon-induced bacteriostasis in human uroepithelial cells.
The most prominent gamma interferon (IFN-gamma)-induced antimicrobial effector mechanisms are the induction of nitric oxide (NO) synthase (NOS) and of indoleamine 2,3-dioxygenase (IDO) activity. We have recently found that human glioblastoma cells and human macrophages inhibit the growth of group B streptococci after stimulation with IFN-gamma. In this report, we show that in addition, human RT...
متن کاملInterleukin-4 inhibits indoleamine 2,3-dioxygenase expression in human monocytes.
Indoleamine 2,3-dioxygenase (IDO), a flavin-dependent enzyme that catalyzes the conversion of tryptophan to kynurenine, is induced in peripheral blood mononuclear cells by interferon-gamma (IFN gamma). Interleukin-4 (IL-4) is a cytokine that modulates the functional properties of monocytes/macrophages, and we investigated the effects of IL-4 on IDO. We showed that IL-4 inhibited the induction o...
متن کاملHuman bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation.
Marrow stromal cells (MSCs) inhibit allogeneic T-cell responses, yet the molecular mechanism mediating this immunosuppressive effect of MSCs remains controversial. Recently, expression of indoleamine 2,3-dioxygenase (IDO), which is induced by interferon-gamma (IFN-gamma) and catalyzes the conversion from tryptophan to kynurenine, has been identified as a T-cell inhibitory effector pathway in pr...
متن کاملIndoleamine 2,3-Dioxygenase Activity Increases NAD+ Production in IFN-γ–Stimulated Human Primary Mononuclear Cells
IFN-γ activation of mononuclear phagocytes significantly increases indoleamine 2,3-dioxygenase (IDO) and flux through the kynurenine pathway (KP). However, the effect of IDO on NAD+ synthesis, the end product of KP metabolism, is unknown. To investigate this, primary human peripheral blood mononuclear cells were cultured up to 10 days and activated with IFN-γ in the presence or absence of a pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 166 10 شماره
صفحات -
تاریخ انتشار 2001